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TO THE EDITOR:

Respiratory diseases are on the rise globally, and 
COPD now ranks as the fourth leading cause of death 
worldwide. In 2021 alone, COPD claimed approximately 
3.5 million lives, and 90% of deaths were in people 
under 70 years of age living in low- and middle-income 
countries.

While spirometry remains the gold standard for 
diagnosing COPD and monitoring pulmonary diseases, 
conventional spirometers cost over $2,000, limiting 
their availability in resource-constrained settings. 
Even portable alternatives may be too expensive for 
routine use. Mobile phones offer a promising solution 
to this accessibility challenge. With their widespread 
availability, they present an opportunity to implement 
cost-effective spirometry using the phone’s embedded 
microphone. Previous research has demonstrated the 
feasibility of measuring pulmonary function through 
breath sounds,(1-3) although many approaches required 
additional equipment such as external microphones or 
instrumented blowpipes.(4-6)

Our approach advances this concept by analyzing 
the sound of a patient’s forced breathing without any 
external equipment, making it more accessible to health 
care professionals and patients alike. This shift toward 
equipment-free measurements opens opportunities for 
applying advanced analytical techniques, particularly 
neural networks. These computational models excel at 
pattern recognition, making them ideal for analyzing 
complex audio signals from breathing.(7,8)

It’s important to note that spirometry and audio 
recordings measure fundamentally different phenomena. 
Traditional spirometry directly measures airflow and 
volume, while our approach analyzes acoustic signals 
indirectly related to airflow. These acoustic patterns are 
influenced by airway anatomy, ambient acoustics, and 
microphone characteristics. Our objective is to establish 
whether these distinct techniques can derive comparable 
functional values, creating a reliable mapping between 
acoustic patterns of forced expiration and corresponding 
pulmonary function metrics.

The authors obtained ethical approval from two Brazilian 
universities: Universidade Estadual de Campinas and 
Universidade Federal de São Paulo research ethics 
committees (CAAE 65695422.4.0000.5404). We collected 
recordings from consenting patients undergoing routine 
spirometry in the Pulmonary Function Laboratory of the 
Pulmonology Division at the Escola Paulista de Medicina/
Universidade Federal de São Paulo. For each participant, 
a single post-bronchodilator spirometry reading was 

performed using conventional equipment, providing 
reference values for FVC, FEV1, and PEF. Immediately 
after the standard spirometry procedure, each participant 
performed a single forced expiration maneuver under 
a standardized positioning protocol. Volunteers held 
a Samsung Galaxy J500M/DS (Samsung Electronics; 
Suwon, South Korea) smartphone upright with the 
screen facing them at approximately 30 cm, directing 
their expiratory flow toward the center of the screen. 
To optimize signal quality and ensure reproducibility, 
a nose clip was applied, and a tube was placed in the 
mouth, as shown in Figure 1. A certified respiratory 
technician supervised all maneuvers to ensure proper 
technique, and recordings were made using the free 
app Audio Recorder (Samsung Electronics).

This one-to-one approach allowed for direct comparison 
between the clinically measured spirometry values 
and the audio-derived estimates for each patient. The 
analysis covered three key spirometry parameters: FVC, 
FEV1, and PEF. In total, we gathered 25 recordings: 7 
from healthy patients, 14 from patients with obstructive 
diseases, and 4 from patients with restrictive disorders. 
The study cohort consisted of 9 males and 16 females 
with a mean age of 58.8 ± 13.6 years. All data was 
anonymized for further processing.

Audio samples were processed using the Torch Audio 
library, standardized to mono-channel at 48 kHz, and 
adjusted to a uniform duration of five seconds. To 
address the limited dataset size, we implemented a 
comprehensive three-stage data augmentation pipeline 
to improve model generalization and robustness. In the 
first stage, we applied Additive White Gaussian Noise 
with a controlled signal-to-noise ratio between 0 and 
0.3, simulating various real-world recording conditions. 
The second augmentation stage involved random gain 
adjustment, multiplying the audio signal by a random 
factor between 0 and 60, helping the model become 
invariant to volume differences. For the third stage, 
we transformed each augmented audio sample into 
a set of three mel spectrograms with different time-
frequency resolutions (window sizes: 512, 1,024, and 
2,048 samples), all with a 25% frame overlap and 64 
mel frequency bins. These three spectrograms were 
combined as channels in a single image, providing a 
rich multi-resolution input to the convolutional neural 
networks. Finally, we applied SpecAugment techniques 
to the spectrograms, randomly masking frequency bands 
and time segments to enhance model generalization.(9) 
This augmentation strategy dynamically expanded the 
dataset, generating endless training examples from the 
original 25 recordings during model training.
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Two convolutional neural network models were 
compared as regressors. The baseline architecture 
consisted of four consecutive blocks, each with a 
feature detection layer, a Rectified Linear Unit (known 
as ReLU) activation function, and a normalization 
layer. We also utilized the more advanced residual 
network (know as ResNet) architecture with 152 layers 
(ResNet152), which was pre-trained on the ImageNet 
database containing over 14 million images across 
20,000 categories, providing a robust foundation 
for transfer learning to our specific task. Transfer 
learning was applied to the ResNet152 using three 
strategies: (1) Freezing—all layers were kept fixed, 
except the final classification layer; (2) Unfreezing—all 
layers were fine-tuned; and (3) Partial freezing—only 
the last 50 layers were fine-tuned, preserving the 
general feature extraction capabilities of the earlier 
layers while allowing the deeper layers to adapt to 
the specific application.

The performance of our deep learning models is 
quantified using the root mean squared error (RMSE) 
reported in Table 1. For FVC, the best-performing 
model was the ResNet152 with the freezing strategy, 

Table 1. RMSE results of the tested architectures and fine-tuning techniques. RMSE measures the average magnitude 
of prediction errors compared to actual spirometry values. Lower values indicate better performance.

Network RMSE
Architecture Fine-tuning Strategies FVC (L) FEV1 (L) PEF (L/min)

Classic CNN - 0.82 ± 0.15 0.49 ± 0.17 1.25 ± 0.22
ResNet152 Unfreezing 0.78 ± 0.17 0.48 ± 0.28 1.56 ± 0.51

Partial Freezing 0.74 ± 0.23 0.52 ± 0.19 1.46 ± 0.69
Freezing 0.66 ± 0.27 0.50 ± 0.23 1.32 ± 0.37

RMSE: root mean squared error; CNN: convolutional neural network; and ResNet152: residual network architecture 
with 152 layers.

Figure 1. Figure diagram illustrating the standardized 
positioning used for smartphone spirometry. The participant 
performs a forced expiratory maneuver while holding a 
smartphone approximately 30 cm away, with the screen 
facing him/her, similar to taking a selfie. A nose clip and 
a mouth tube are used to ensure proper technique and 
optimize signal quality.

30 cm

yielding an RMSE of 0.66 ± 0.27 L. For FEV1 and PEF, 
the RMSE values are approximately 0.5 L and 1.32 
L/min, respectively. When compared to the average 
clinical values (FVC = 2.92 ± 0.89 L, FEV1 = 2.02 ± 
0.63 L, PEF = 5.88 ± 1.94 L/min), they represent 
rough deviations of 28% for FVC, 35% for FEV1, and 
20% for PEF. Although these deviations are larger 
than those typically seen in conventional spirometry, 
it is important to note that our method employs only 
the built-in microphone of a smartphone—without any 
additional hardware—to capture respiratory sounds 
under real-world conditions. In contrast, many existing 
smartphone-based or low-cost spirometry tools 
rely on external devices to achieve lower prediction 
errors. Our approach prioritizes accessibility and 
cost-effectiveness, making it particularly suitable for 
resource-limited settings.

In conclusion, this study demonstrates the potential 
of using smartphone microphones as a cost-effective 
and accessible alternative to traditional spirometry 
equipment, with deep learning models showing a 
promising correlation between forced expiration 
audio and pulmonary function parameters. While the 
current error margins (20-35%) are higher than clinical 
standards for conventional spirometry, this approach 
represents a significant step toward more accessible 
respiratory assessment tools, especially in resource-
limited settings where conventional spirometers are 
scarce. By leveraging widely available technology and 
advanced machine learning techniques, we hope to 
contribute to more accessible respiratory health care 
screening worldwide.

We acknowledge the fact that the small dataset 
(25 samples) limits generalizability, reflecting the 
study’s exploratory nature. Future work should 
expand the dataset, refine regression models, and 
test advanced techniques such as recurrent neural 
networks or transformers to better capture temporal 
audio patterns. We also recognize that the current 
implementation does not meet established clinical 
pulmonary function testing accuracy standards, which 
typically require error margins below 5-10%. Future 
research will focus on reducing prediction errors to 
approach clinically acceptable levels for diagnostic 
use. Using a single device model is another limitation, 
as its outdated hardware may not reflect current 
technology. Yet, this choice serves as a “worst-case 
scenario,” showing that even older devices can 
provide valuable data. Results will likely improve 
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with newer models featuring better microphones, and 
future research should include various smartphones 
to enhance generalizability and develop calibration 
protocols to manage hardware differences.
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